A Status Report on The MAJORANA DEMONSTRATOR Project

Carolina International Symposium on Neutrino Physics
May 20-22, 2013 University of South Carolina

Happy Birthday
Frank and Ettore
What is $\beta\beta$?

Fig. from Deep Science

Fig. from arXiv:0708.1033

Feb. 25, 2013

Steve Elliott
\[\Gamma_{2\nu} = G_{2\nu} |M_{2\nu}|^2 \quad \Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 m_{\nu}^2 \]

\(G \) are calculable phase space factors.
\[G_{0\nu} \sim Q^5 \]
\(|M| \) are nuclear physics matrix elements.

Hard to calculate.

\(m_{\nu} \) is where the interesting physics lies.
What about mixing, m_ν & $\beta\beta(0\nu)$?

No mixing: $\langle m_{\beta\beta} \rangle = m_{\nu e} = m_1$

$$\langle m_{\beta\beta} \rangle = \sum_{i=1}^{3} |U_{ei}|^2 m_i \varepsilon_i$$

virtual ν exchange

$\varepsilon = \pm 1$, CP cons.

Compare to β decay result:

$$\langle m_\beta \rangle = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

real ν emission

Compare to cosmology:

$$\sum m_i = \sum m_i$$
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter, Brianna Mount, Greg Serfling, Jared Thompson

Duke University, Durham, North Carolina, and TUNL
Matthew Busch, James Esterline, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusev,
Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and
the University of California - Berkeley
Nicolas Abgrall, Mark Amman, Paul Barton, Yuen-Dat Chan, Alex Hegai, Paul

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Steven Elliott, Johnny Goett, Keith Rielage, Larry
Rodriguez, Michael Ronquest, Harry Salazar, Wenqin Xu

North Carolina State University, Raleigh, North Carolina and TUNL
Dustin Combs, Lance Leviner, David G. Phillips II, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Jim Beene, Fred Bertrand, Greg Capps, Alfredo Galindo-Uribarri,
Kim Jeske, David Radford, Robert Varner, Brandon White,
Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji

Pacific Northwest National Laboratory, Richland, Washington
Estanislao Aguayo, Jim Fast, Eric Hoppe, Richard T. Kouzes, Brian LaFerriere, Jason
Merriman, John Orrell, Nicole Overman, Doug Reid, Aleksandr Soin

Shanghai Jiaotong University, Shanghai, China
James Loach

South Dakota School of Mines and Technology, Rapid City, South Dakota
Adam Caldwell, Cabot-Ann Christofferson, Stanley Howard,
Anne-Marie Suriano

Tennessee Tech University, Cookeville, Tennessee
Mary Kidd

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of North Carolina, Chapel Hill, North Carolina and TUNL
Padraic Finnerty, Florian Fraenkle, Graham K. Giovanetti, Matthew P. Green,
Reyco Henning, Mark Howe, Sean MacMullin, Benjamin Shanks,
Christopher O'Shaughnessy, Kyle Snavely, Jacqueline Strain, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Leila Mizouni, Clint Wiseman

University of South Dakota, Vermillion, South Dakota
Vince Giuseppe, Kirill Pushkin, Nathan Snyder

University of Tennessee, Knoxville, Tennessee
Yuri Efremenko, Sergey Vasiliev

University of Washington, Seattle, Washington
Tom Burritt, Jason Detwiler, Peter J. Doe, Juljeta Gruszko, Greg Harper, Jonathan Leon,
David Peterson, R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel
MAJORANA DEMONSTRATOR R&D Goals

• Technical goals:
 – Demonstrate backgrounds low enough to justify building a tonne scale Ge experiment.
 – Establish feasibility to construct & field modular arrays of Ge detectors.
 – Minimize costs, optimize the schedule, and retire risks for a future 1-tonne experiment.

• Science goals:
 – Although we are driven by technical goals, we also aim to extract the maximum science from the DEMONSTRATOR prototype,
 • Test the recent claim of an observation of 0νββ in 76Ge.
 • Exploit the low-energy sensitivity to perform searches for dark matter, axions.

• Work cooperatively with GERDA Collaboration toward a single international tonne-scale Ge experiment that combines the best features of MAJORANA and GERDA.
The MAJORANA DEMONSTRATOR Module

^{76}Ge offers an excellent combination of capabilities & sensitivities.

(Excellent energy resolution, intrinsically clean detectors, commercial technologies, best $0\nu\beta\beta$ sensitivity to date)

• 40-kg of Ge detectors
 – 30-kg of 86% enriched ^{76}Ge crystals required for science and background goals
 – Point-contact detectors for DEMONSTRATOR

• Low-background Cryostats & Shield
 – ultra-clean, electroformed Cu
 – naturally scalable
 – Compact low-background passive Cu and Pb shield with active muon veto

• Located at 4850' level at Sanford Lab

• Background Goal in the $0\nu\beta\beta$ peak ROI (4 keV at 2039 keV)
 ~ 3 count/ROI/t-y (after analysis cuts) (scales to 1 count/ROI/t-y for tonne expt.)
MJD Implementation

• Three Phases
 – Prototype cryostat (2 strings, $^{\text{nat}}\text{Ge}$) (Summer 2013)
 – Cryostat 1 (3 strings $^{\text{enr}}\text{Ge}$ & 4 strings $^{\text{nat}}\text{Ge}$) (Late 2013)
 – Cryostat 2 (up to 7 strings $^{\text{enr}}\text{Ge}$) (Fall 2014)
Underground Laboratory

May 2013

CISNP - Elliott
Underground Lab - Status

- Eforming lab operational since summer 2011
- Davis Campus lab outfitting finished
- Shield floor, LN system, assembly table, air bearing system, glove boxes, localized clean space all installed
Materials and Assay

• Significant R&D and advances made in improvement of ICP-MS sensitivity for U and Th in copper. Req. sensitivity of 0.3 ppt reached.
• Monitoring U and Th in copper baths electrolyte.
• All plastic materials selected after high sensitivity NAA analysis. Assay complete.
• Significant progress made in development of low background front-end electronics.

Plastics for NAA analysis

Front-end electronics

TIG rods in LB count system

CISNP - Elliott
Electroforming

- Eforming at PNNL and at 4850’ at SURF
- Machine shop operational

Installation of mandrel in bath

Copper ready to cut

Bake/Quench

Checking Deposition

EDM installed UG

CISNP - Elliott

Lathe installed UG
Enriched Ge

- **42.5 kg** enrGe received as oxide and stored UG in Oak Ridge.
- Processed to metal with 98% conversion.
- Expect additional 4-5 kg Russian contribution.

Batch 1 (20 kg) Assay results

<table>
<thead>
<tr>
<th></th>
<th>Specs</th>
<th>ECP</th>
<th>ORNL Physics (Sample 1)</th>
<th>ORNL CSD (sample 2)</th>
<th>PNNL (Sample 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76Ge</td>
<td>≥ 86.0</td>
<td>87.67</td>
<td>86.9 (2)</td>
<td>87.9 (9)</td>
<td>88.2 (3)</td>
</tr>
<tr>
<td>74Ge</td>
<td>12.16</td>
<td>12.5 (1)</td>
<td>12.0 (1)</td>
<td>11.8 (3)</td>
<td></td>
</tr>
<tr>
<td>73Ge</td>
<td>0.07</td>
<td>< 0.2</td>
<td>0.052 (1)</td>
<td>0.04 (2)</td>
<td></td>
</tr>
<tr>
<td>72Ge</td>
<td>0.05</td>
<td>< 0.2</td>
<td>0.0058 (3)</td>
<td>0.02 (1)</td>
<td></td>
</tr>
<tr>
<td>70Ge</td>
<td>≤ 0.07</td>
<td>0.05</td>
<td>< 0.2</td>
<td>0.0157 (3)</td>
<td>0.005 (4)</td>
</tr>
</tbody>
</table>
• 20 kg of modified natural-Ge BEGe (Canberra) detectors in hand (33 dets. UG).
• ORTEC selected to produce enriched detectors. Excellent projected yield.
• First enriched detectors (9.5 kg in 10 det.) delivered UG.
Point Contact Detectors

Sharp weighting potential permits good discrimination between multiple and single site events

[Graph showing charge and current signals with time axis (t [ns]) and amplitude (Arb. units)]

CISNP - Elliott
Multi-Site Rejection

Removes 89% of multi-site events (gamma rays)
Retains 90% of single-site events ($0\nu\beta\beta$)
• Prototype cryostat assembled and being tested. E-beam welds completed.
• Thermosyphon design validated. Fabricated and tested.
• Prototype vacuum system designed, reviewed, assembled, and being operated.
• String test cryostats built.
• Parts and material tracking in place.
• Clean machining implemented underground.
Mechanical Systems

- Glove box (Mbraun) underground.
- Hovair delivered and tested.
- Overfloor installed UG.
- Majority of shielding material in hand, some is underground.
- Prototype calibration system demonstrated.
Data Acquisition

- Slow controls fielded and in operation in TCR and Davis campus Prototype cryostat vacuum system in operation.
- Low sub-keV threshold digital system operating for MALBEK.
- The DAQ software and hardware is up and running and in continuous use in test stands at UNC, PNNL, LBNL, LANL, and UW.
- Detector acceptance and characterization systems operating at SURF.
- Tablet and smart phone support.
Simulation: MJD 0-10 MeV
DEMONSTRATOR Background Model

Total BG expected 3 cnts/(ROI-t-y)
Towards 1TGe

MAJORANA
- Modules of $^{\text{enr}}$Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Initial phase: R&D demonstrator module: Total ~40 kg (up to 30 kg enr.)

GERDA
- ‘Bare’ $^{\text{enr}}$Ge array in liquid argon
- Shield: high-purity liquid Argon / H$_2$O
- Phase I (2012): ~18 kg (HdM/IGEX diodes)
- Phase II (2013): add ~20 kg new detectors - Total ~40 kg

Joint Cooperative Agreement:
- Open exchange of knowledge & technologies (e.g. MaGe, R&D)
- Intention is to merge for tonne-scale experiment. Select best techniques developed and tested in GERDA and MAJORANA
MJD Overview

- Assembly and construction proceeding at Sanford Davis Campus laboratory.
- Based on assays, material backgrounds projected to meet cleanliness goals.
- EF copper being produced underground at SURF and PNNL
- Successful reduction and refinement of $^{\text{enr}}\text{Ge}$ with 98% yield.
- Detector vendor AMTEK (ORTEC) has produced 9.5 kg in 10 detectors from the reduced/refined $^{\text{enr}}\text{Ge}$. 9 detectors underground at SURF.

Schedule
- Prototype Cryostat – Summer 2013
- Cryostat 1 – Late 2013
- Cryostat 2 - Fall 2014